

EFFECT OF AMAFERM® ON RUMEN AND TOTAL TRACT DIGESTIBILITY

R.A. Gomez-Alarcon, C. Dudas and J.T. Huber

Cows fed AMAFERM had increased ruminal and total tract digestibility of nutrients, plus efficiency of microbial protein production.

SUMMARY

DOSE OF AMAFERM USED 3g per head, per day

The addition of AMAFERM improved ruminal digestibility of nutrients, especially NDF and ADF. It also had positive responses in total tract digestibility of dry matter and NDF. Trial 1 showed a response in the efficiency of microbial yields. Individual feedstuffs appear to respond differently to AMAFERM – with milo, alfalfa hay and wheat straw all showing increased in vitro digestibility of dry matter. However, the improvement in the forages was much greater than in the milo grain.

VALUE

The addition of AMAFERM improved ruminal digestibility of nutrients, especially NDF and ADF, and the increase in digestibility of in vitro dry matter was much greater in forage than in milo grain.

PROTOCOL

Trial 1

Type of Animals/Experimental Units

Holstein cows

Number of Animals/Experimental Units

• 4 head

Trial Design

• 2 X 2 factorial in Latin Square

PROTOCOL (CONTINUED)

Treatments

- Low forage, Control
- High forage, Control
- Low forage, AMAFERM
- High forage, AMAFERM

Diet Information

- Concentrate-to-Forage ratios were 2:1 (high) and 1:2 (low)
- Alfalfa hay and cubes, cottonseed hulls, whole cottonseed, cottonseed and soybean meal, milo, molasses, and mineral/vitamin mix
- CP = 16%, NEI = 1.3-1.7 mcal/kg

Trial 2

Type of Animals/Experimental Units

Holstein cows

Number of Animals/Experimental Units

• 6 head

Trial Design

• Replicated 3 X 3 factorial in Latin Square

Treatments

Control
AMAFERM
Saccharomyces Cerevisiae

Diet Information

• 70:30 Concentrate:Forage

Trial 3

Type of Animals/Experimental Units

Holstein cows

Number of Animals/Experimental Units

• 4 head

Trial Design

Crossover

Treatments

Control
AMAFERM

PROTOCOL (CONTINUED)

Diet Information

• 61:39 Concentrate:Forage

Data Collection

• Feed intake, total tract digestibility, rumen digestibility, microbial yields, rumen fermentation (Trial 1 only), passage rates and potentially digestible dry matter (Trial 3 only)

DISCUSSION OF RESULTS

Overall

- Dry matter intakes differed greatly both within and between trials
- Total tract digestibility showed only small differences
- Ruminal digestibility showed much variability

Trial 1

- There was a concentrate effect, as ADF and NDF total tract digestibility improved significantly (*P* < 0.05) on the low forage diet (ADF: 13% improvement; NDF: 9% improvement)
- No significant differences in DM, NDF, or ADF digestibility in the rumen were detected, but AMAFERM numerically increased ADF digestibilities by 20%
- There was an increase in the efficiency of microbial yield (P < 0.05) for the AMAFERM treatment (Table 2)
- Ruminal contents were not affected by treatment for pH, total VFA, or individual VFA
- Ruminal ammonia was high for all treatments, but variation was too high to detect significant effects (data not shown)

Trial 2

- Saccharomyces Cerevisiae and AMAFERM treatments increased CP, NDF, and ADF digestibilities (*P* < 0.05) despite relatively small differences (Table 1)
- AMAFERM increased NDF digestibility (P < 0.05) and numerically increased ADF digestibility

Trial 3

- Cows receiving AMAFERM ate significantly more dry matter than control cows
- NDF and ADF digestibility were significantly improved in cows receiving AMAFERM

DISCUSSION OF RESULTS (CONTINUED)

- There was a 36% advantage in NDF digestibility, and 41% in ADF digestibility with AMAFERM
- No differences were seen for rates of passage in corn or alfalfa in Trial 3 (data not shown)
- Potentially digested dry matter was similar for the control and AMAFERM treatment for milo and wheat straw, but was increased (P < 0.05) with AMAFERM for alfalfa hay (data not shown)
- The control had a lower extent of digestion (P < 0.01) for milo, alfalfa hay, and wheat straw dry matter, than with treatments where AMAFERM was added to rumen inocula from control cows, or where rumen inocula was taken from cows fed AMAFERM. The response was greater with forages than milo grain (Table 3)

		DM Intake	DM	OM	CP	NDF	ADF	
Table 1Summaryof 3 Trials: Effectof AMAFERMon Feed Intakeand Total TractDigestibilityof Nutrients.		Kg/d	Digestion Coefficient (%)					
	Trial 1 ¹							
	Low Forage, Control	10.9	72.6	74.6	67.9	50.2	34.1	
	Low Forage, AMAFERM	12.6	72.4	74.2	69.9	54.8	38.5	
	High Forage, Control	11.5	67.8	74.7	74.4	66.8	52.1	
	High Forage, AMAFERM	9.4	71.2	72.9	73.5	67.3	51.9	
	SEM	3.3	4.3	1.5	5.6	1.3	1.1	
	Trial 2 ²				I			
	Control	16.1	66.1	67.1	69.5	47.5	18.0	
	Saccharomyces Cerevisiae (SC)	16.7	66.8	69.5	72.3	51.3	32.2	
	SEM	17.0	66.7	69.2	71.8	50.2	32.8	
	AMAFERM	0.7	1.3	0.9	0.8	1.6	5.6	
	Trial 3				r			
	Control	23.6ª	63.8ª	66.0	74.1	39.6 ^a	21.3ª	
	AMAFERM	26.2 ^b	67.9 ^b	69.3	76.1	47.0 ^b	30.0 ^b	

 a,b Means in the same column within a trial with different superscripts differ (P < 0.05)

¹ Concentrate effect significant (P < 0.01) for ADF and NDF, also interaction effect significant (P < 0.05) for ADF and NDF

² Orthogonal contrasts Control vs SC and AMAFERM significant (P < 0.05) for CP, NDF, and ADF digestion coefficients, SC vs. AMAFERM did not differ (P > 0.25)

POWER UP PERFORMANCE. MAXIMIZE DIGESTIBILITY.

DAIRY	BEEF	POULTRY	SWINE	EQUINE	MULTI-SPECIES	PET	DIGESTIBILITY	MODE OF ACTION

		DM	NDF	ADF	TFOM	Yom
Table 2Summary of3 Trials: Effectof AMAFERMon RumenDigestibility ofDM, NDF, andADF; TrulyFermentableOrganic Matter(TFOM); and						
	Trial 1 ¹					
	Low Forage, Control	48.5	43.1	30.4	64.3	0.183
	Low Forage, AMAFERM	45.1	44.6	36.2	67.8	0.206
	High Forage, Control	63.9	66.2	47.5	79.6	0.134
	High Forage, AMAFERM	62.5	67.3	45.7	83.4	0.195
	SEM	8.1	9.3	9.7	7.8	0.010
Efficiency of	Trial 2 ²					
Microbial Yields (Yom, g microbial protein/g TFOM).	Control	26.1	40.9	16.4	58.0	0.192
	Saccharomyces Cerevisiae (SC)	37.7	53.1	29.3	54.7	0.197
	AMAFERM	42.8	56.6	30.8	58.9	0.188
	SEM	5.7	4.2	11.3	8.9	0.020
	Trial 3					
	Control	25.2	27.7 ^a	19.5 ^a	53.0	0.171
	AMAFERM	26.9	37.6 ^b	27.4 ^b	53.7	0.181
	SEM	2.1	3.4	1.6	3.5	0.010

^{a,b} Means within the same column with different superscripts are different (P < 0.05)

¹ For Yom, Control < AMAFERM (P < 0.05)

² Orthogonal contrasts Control vs SC and AMAFERM significant (P < 0.05), SC vs. AMAFERM did not differ (P > 0.25)

Table 3 Effect of	Treatment						
		Control	Control + AMAFERM	AMAFERM			
AMAFERM on in vitro digestibility of dry matter (DM) of different Feedstuffs ^{1,2}		Dry Matter Digestibility					
	Milo	84.6	91.1	91.0			
	Alfalfa hay	50.4	61.8	59.4			
	Wheat straw	49.6	65.8	66.8			

¹ Orthogonal comparison of Control vs. Control + AMAFERM (added inocula) and AMAFERM (fed) was significant (P < 0.01), but Control + AMAFERM vs. AMAFERM was not (P > 0.50) ² Four cows/treatment in Trial 3

BIOZYME INCORPORATED

6010 Stockyards Expy | St. Joseph, MO 64504 USA Tel: 816-238-3326 | Fax: 816-238-7549 support@biozymeinc.com | www.biozymeinc.com

